When There Are Acute Changes In Mental Status In Patients With Diabetes

Author(s): 
Adam Lang, BS, and Kathleen Satterfield, DPM, FACFAOM

   A recently published retrospective study of 595 patients admitted to the emergency department found trauma, hypoglycemia and stroke to be the three most common causes of acute mental status (AMS).1 The average age of patients in the study was 51.5 years. The common etiologies of AMS changes in the elderly patients of this study (one-third were over the age of 70) were diabetes, hypertension, renal dysfunction and infection.

   One should immediately note the type of AMS the patient has and whether it involves mental clouding, confusion, delirium, obtundation, stupor or coma. The presence of focal or lateralized neurological defects, as well as the timing and duration of symptoms.2

   This type 2 diabetic male presented one month after undergoing a Keller arthroplasty for offloading an ulcer. The patient had never taken prescribed antibiotics. He did have extreme signs of mental decline. This points to a few differentials.

What You Should Know About Diabetic Ketoacidosis

   Usually developing in less than 24 hours, diabetic ketoacidosis (DKA) is commonly accompanied by hyperglycemia, ketosis and acidosis. Polyuria, polydipsia, polyphagia and weakness can be present for days before the patient typically presents with vomiting and ketoacidosis. Mental status can range anywhere from being fully alert to lethargic to being in a coma. Reduced skin turgor, tachycardia, hypotension, dry mucous membranes and overall dehydration are evident. Kussmaul’s respiration and acetone smelling breath are common. The patient’s body temperature can be normal or low, or a fever may be present with an underlying infectious etiology.3,4

   It is of vital importance to determine the underlying etiology of the DKA in order to treat. Commonly known etiologies include: infection (pneumonia, urinary tract infection and sepsis), inadequate insulin, new-onset diabetes, myocardial infarction, pancreatitis and stroke. Diabetic ketoacidosis can also be caused by certain drugs.3,4

   Diabetic ketoacidosis usually presents in patients with type 1 diabetes but is now more common in patients with type 2 diabetes. Newton and colleagues studied 138 patients admitted for DKA and found only small differences in the initial presentation of type 1 versus type 2 DKA.5

   Type 2 patients had less severe acidosis and near normal serum potassium levels, but needed a longer course of treatment. Insulin non-adherence was a major factor as this contributed to 85 percent of all admissions. Infections were a factor in 38 percent of all admissions. Twenty-two percent of patients with type 1 diabetes had infections and 48 percent of patients with type 2 diabetes had infections. These infections included: urinary tract infection (UTI), upper respiratory tract (URT) infections, pneumonia, cellulitis and cutaneous abscesses. There was a small subset of patients (10 percent) who had pancreatitis.5

   Recent studies reveal that beta-hydroxybutyrate (BHB) is considered far superior to nitroprusside method (urine ketones, serum ketones) for monitoring ketone concentrations in DKA. Beta-hydroxybutyrate accounts for the majority of the serum ketones found in DKA.4,6,7 This is now considered a vital test for diagnosis and management, and can now even be done via finger stick.4,7

   Serum hyperkalemia often results due to the extracellular shift of potassium due to acidemia, serum hyperosmolarity, osmotic diuresis and hyperglycemia from the severe insulin deficiency of DKA.3,4 Hypokalemia is also not uncommon, due to osmotic diuresis, which can cause total body depletion of the extracellular potassium.8 In a 2007 study of 56 patients with DKA, researchers found potassium levels to be normal in 52.5 percent of patients, hyperkalemia in 36.5 percent and hypokalemia in 14 percent with the differences not being statistically significant.9 Another study reported the average potassium value to be around 5.6 mEq/kg.10

Add new comment