When Lower Extremity Dysfunction Contributes To Back Pain

Author(s): 
George C. Trachtenberg, DPM

   With all of this said, I think one needs to consider the value of evaluating and treating this type of patient from a podiatric perspective. How should we evaluate gait and what do we need to treat in order to alter the gait pattern in such a way to facilitate a positive effect on movement and the proximal structures in the kinetic chain?

   First, I think it is important to consider that the major plane of movement in walking is, in fact, the sagittal plane. More than 80 percent of gait should be sagittal plane movement. Is this something most podiatric practitioners generally consider when they treat patients biomechanically? If so, why does it seem that so many of the orthotic corrections prescribed for patients in the podiatry community get applied for frontal plane stability or at least as frontal plane corrections?

   Of course, this is the area I suspect will create some controversy as it also brings up the idea of motion controlling orthoses versus motion enhancement orthoses. These two different ideas of course are a topic for a different discussion.

   Certainly, when we watch patients stand and walk in a traditional setting (i.e., a hallway), the frontal plane deformity is the most obvious to assess and ascertain information about. However, are those findings merely demonstrations of sagittal plane compensations? If so, are we then only treating the symptoms that result from the sagittal plane pathology and not the pathology itself?

   It is easy to believe what we can readily see in our standard environments of examination. After all, many of our patients report feeling better so it becomes even easier to believe the treatment must have been correct. Certainly, one can consider that any increased foundational stability created (i.e. frontal plane corrections) can and often will positively influence certain activities such as standing, or those activities that do not require a lot of movement and can therefore take stress off of the back through obtaining a more static structural alignment.

   However, is this also the best way to properly enhance repetitive physical motion in a closed kinetic environment and treat the podiatric biomechanical dysfunctions that may actually be the true source of the pathology influencing the back dysfunction in the first place?

   Certainly, another approach is considering more of what is happening in the sagittal plane. That, after all, is the predominant plane of walking movement and may potentially be the etiological trigger of lower back dysfunction. If this is the actual or major contributing etiology to back pain and dysfunction, treatment lies in addressing that plane of movement more thoroughly.

Understanding The Impact Of Lumbar Spine Flexion

When considering back pain, it is important to consider what can destabilize the back. Flexion of the lumbar spine appears to have the most potential for damaging effects. If the lumbar spine flexes during gait, the vertebrae flex forward, the posterior vertebral facets disengage and the intervertebral discs become compressed anteriorly, thereby encouraging them to extrude posteriorly.

Comments

Very informative and important paper.

I would just like to add that flexion of the spine can also be a result of the pelvis rotating posteriorly, which is called a posterior innominate. Comparing the PSIS to the ground in neutral calcaneal stance position to relaxed calcaneal stance position will help in ascertaining how orthoses will help in unilateral cases.

I am presently doing a study on the relationship of the lateral talus subluxation to the posterior innominate.

Eventually, we should become part of the team to treat the back.

Are there any recommendations for soft vs hard heel lifts in back pain?

Add new comment