Locking Plates: Do They Prevent Complications?

Author(s): 
William T. DeCarbo, DPM, FACFAS, and Alexander J. Pappas, DPM, AACFAS

Can Locking Plates Be Effective For First MPJ Arthrodesis, First Metatarsocuneiform Joint Arthrodesis And Lapidus Bunionectomies?

Hyer and colleagues compared four plate constructs for the fixation of first metatarsophalangeal joint (MPJ) arthrodesis.17 The four groups received a static plate, a static plate with a lag screw, a locked plate or a locked plate with a lag screw respectively. Researchers found no significant difference in the time to fusion or rate of fusion between static and locked plates with or without a lag screw.

   Hunt and coworkers also looked at different types of fixation for a first MPJ arthrodesis.18 They compared a locking plate to a non-locking plate. There were 73 feet in the locking plate group and 107 feet in the non-locking plate group. Locked plates were associated with higher non-union rates. The authors suggested the reason for the lower union rate with locked plating included a diminished ability to obtain sufficient inter-fragmentary compression with the locked plate design and the inferior rigidity of the titanium plate used in this study in comparison to a stainless steel plate.

   In an analysis of locking fixation in the first metatarsocuneiform joint, Saxena and colleagues compared the outcomes of two different fixation constructs for the Lapidus bunionectomy.19 The study compared 19 patients with crossed lag screws to 21 patients with a locking plate with a plantar lag screw. Other than fixation, the only interventional difference pertained to postoperative weightbearing, in which those receiving the plate initiated full weightbearing on the operated foot at four weeks postoperative in comparison to six weeks for those with crossed screws. The authors found no statistically significant differences related to postoperative complications between the two fixation groups. The authors concluded that the Lapidus bunionectomy fixated with a locking plate and a plantar lag screw allows earlier weightbearing in comparison to crossed lag screws without a difference in complications.

   Sorenson and colleagues also assessed the success of a locked plate for the Lapidus fusion.20 In 19 out of 21 feet, surgeons used an interfragmentary screw with plates in the other two. It is also worth noting that 16 out of 21 feet received bone marrow aspirate. The findings denoted an average of 6.95 weeks to radiographic fusion, an average of two weeks to ambulation and a 9.52 percent rate of asymptomatic malunion. There was also a 0 percent rate of delayed union or non-union, a 0 percent rate of revision, and a rate of hardware removal of 4.76 percent.

   In a cadaveric study, Scranton and coworkers looked at two different constructs for the first metatarsocuneiform joint arthrodesis.21 This study compared a locking compression plate to crossed screws. Researchers tested each modality on five cadaveric limbs. The plate proved to be a more rigid construct.

   Cottom and coworkers performed a slightly different study of locking plates on the first metatarsocuneiform arthrodesis.22 They compared a low profile locking plate with a compression screw versus the same locking plate with a plantar interfragmentary screw. There were five cadaveric limbs in each group. The mean ultimate load of the locking plate with a plantar interfragmentary screw was statistically greater than the locking plate with an intra-plate compression screw.

   Klos and colleagues compared a medial locking plate with a compression screw versus two crossed screws for the fixation of a first metatarsocuneiform joint arthrodesis.23 Each group consisted of four cadaveric limbs. Under cyclic loading conditions, the construct using a medial locking plate with an adjunct compression screw was superior to the construct using two crossed screws.

Add new comment