Key Insights On Using Hyperbaric Oxygen For Wounds

   Hyperbaric oxygen therapy (HBOT) can be a valuable adjunctive treatment for patients with various types of wounds. These expert panelists discuss their indications for HBOT, their treatment protocol and barriers to the use of HBOT.

   Q: Do you use HBOT for your wound patients and what are the indications?

   A: As Caroline E. Fife, MD, explains, hyperbaric oxygen therapy is the administration of oxygen to the entire body at atmospheric pressures greater than 1.5 times sea level pressure. She notes one should not confuse this with topical oxygen administered to part of the body or oxygen (or air) via “zip up” chambers at very low atmospheric pressures. The usual treatment pressure for wound-related problems is at least 2.0 atmospheres absolute (ATA) although she notes that sometimes patients receive pressures of 2.4 or 2.5 ATA depending on the situation. At these pressures, one can expect tissue oxygen levels in excess of 600 mmHg.

   Dr. Fife notes hypoxia is a common cause of wound healing failure. Non-healing amputations, ulcers due to vascular insufficiency and diabetic foot wounds all share the problem of tissue hypoxia, which Dr. Fife says is usually due to ischemia from vascular disease.

   She says normalizing tissue PO2 enhances resistance to infection, collagen deposition and angiogenesis. However, Dr. Fife sees a disconnect between the rationale for HBOT and what physicians can treat in terms of current Medicare coverage policy.

    “While third-party payers require us to ‘bucket’ wounds and ulcers into neat diagnostic categories, real patients rarely cooperate by falling into clear disease classification systems,” explains Dr. Fife. “A variety of problem wounds exist and are usually the result of multiple local and systemic factors.”

   Kazu Suzuki, DPM, thinks HBOT is “an invaluable adjunctive therapy in modern wound care clinics.” He notes about 10 to 15 percent of his patients who present at his wound care centers have indications for HBOT and he recommends it routinely when indicated. Dr. Suzuki works with the three HBOT centers near his wound care clinic. Two of the centers have monoplace chambers while the other has a multi-place chamber that fits about 10 people at the same time.

   Dr. Suzuki has discovered that most patients prefer monoplace chambers because of the privacy with more open appointment times. This is in contrast to multi-place chamber clinics, which have a fairly rigid schedule for treatment, according to Dr. Suzuki. If the patient is five minutes late, he or she will miss the treatment. However, he always emphasizes that the efficacy of HBOT would be the same in either size chamber, since “oxygen is oxygen” regardless of which clinic they use.

   Michael DellaCorte, DPM, CHT, uses HBOT as an advanced treatment for patients with diabetes and says he has attained “very positive” results. He combines several treatment options with HBOT. These treatment options include negative pressure wound therapy (NPWT), PICC lines, Apligraf (Organogenesis) or Dermagraft (Advanced Biohealing) along with weekly wound care and offloading.

   Q: What are the indications for HBOT? When would you incorporate HBOT into your treatment protocol?

   A: Dr. Suzuki follows the guidelines of the Undersea Hyperbaric Medical Society (UHMS, Both he and Dr. DellaCorte use HBOT for diabetic foot ulcers of Wagner grade III or higher.

   In evaluating all the randomized controlled trials (RCTs) on diabetic foot ulcers over the past 10 years, Dr. Fife says only HBOT trials have enrolled patients with Wagner III grade ulcers and/or significant tissue ischemia. She points out that all other RCTs excluded patients with ischemia.1 Accordingly, Dr. Fife says HBOT “stands alone in demonstrating benefit for ischemic diabetic foot ulcers.”


Dear Editor,

In regards to your recent article, Key Insights On Using Hyperbaric Oxygen For Wounds, published in Volume 23, January 1, 2010:

Dr. Kazu Susuki’s and Dr. Caroline E. Fife’s concerns over equalization of pressure in patients’ middle ears and sinuses during compression is certainly an important one. Middle ear squeeze has been recognized as the most common complication in hyperbaric oxygen therapy. Likewise, as noted by Dr. Michael DellaCorte, pulmonary barotrauma resulting from impaired elimination of gas from the lungs of patients with COPD during decompression is another complication with potentially serious consequences relating to the effects of Boyle’s Law.

What is not mentioned in this discussion, however, is that methods to significantly reduce the incidence of middle ear barotrauma during compression, and to more effectively manage patients with COPD during decompression, have been developed. Dr. Benton P. Zwart of the U.S. Air Force investigated the consequences of pressure change conducted with a constant rate of volume change over time rather than a constant rate of pressure change over time.2 He reported that this approach significantly reduced the incidence of middle ear barotrauma and would, as a result of the same physical principles, make decompression safer for patients with COPD, emphysema, and asthma.

While implementing the pressure-change protocols investigated by Zwart on chambers with manual pneumatic control systems, and even rudimentary electronic control systems, is impractical, they have been implemented during both compression and decompression on chambers with computer-based automatic control systems. Feedback on the practical use of these methods over a number of years has confirmed Zwart’s findings.

Very truly yours,

Russell E. Peterson, Ph.D.
Technical Director
Environmental Tectonics, Corporation
Biomedical Systems
Southampton, Pennsylvania

1 Vrabec JT, Pirone C, Goble S, Mader JT. Middle ear barotrauma from hyperbaric oxygen therapy: Severity,
prevention and management. In: Mueller PHJ, Pirone C, Barach P, eds. Patient safety: Prevention and treatment of complications in hyperbaric medicine. Kensington, Maryland: Undersea and Hyperbaric Medical Society, Inc., 2002:107-113.

2 Zwart BP. The "smooth ride" profile: Development, implementation, and evaluation of a hyperbaric chamber descent and ascent based on a constant rate of volume change with time. Davis Hyperbaric Laboratory Report, Brooks AFB, Texas, 1998.

Add new comment