Emerging Trends In Research With Orthoses And Biomechanics

Start Page: 30
Guest Clinical Editor: Cherri Choate, DPM

   Dr. Nester notes the main focus of his research is detailing the biomechanical purpose of the small structures in the foot. While there is a good knowledge of the function of larger joints and the muscles of the legs and the plantar fascia, Dr. Nester says there is not as much awareness when it comes to the function of lower extremity ligaments, intrinsic muscles, etc.

   To this end, he is undertaking invasive and non-invasive in vivo research. He is also using dynamic cadaver simulations in collaboration with bioengineers in China. Finally, Dr. Nester is using foot modeling, which is in the early stages.

   Dr. Burns also believes the diabetic foot still requires broad investigation, application and innovation from a biomechanical perspective.

   Q: In the past decade, which studies have had the most impact on orthotic intervention in practice?

   A: Drs. Nester and Burns cite a study by Stacoff, et al. Dr. Nester says this study demonstrates the individual response to orthoses and hints at the complex factors that influence how the foot responds.6 “In other words, it is not as simple as Root said it was,” opines Dr. Nester.

   Dr. Nester says a long-term 2002 study by Woodburn, et al., demonstrated that foot orthoses are beneficial for people with rheumatoid arthritis (RA).7 He says this study has led to a demonstrable impact on podiatry practice in the United Kingdom.

   Dr. Burns says the Woodburn study and another study by Landorf, et al., are “standout” randomized controlled trials in evaluating the effects of custom orthoses on different types of pain.7,8

   Dr. Davis concurs about the usefulness of Landorf’s study, which found that a prefabricated orthosis was as effective as a custom device for plantar fasciitis. The study suggests that one may use a prefab device as a first treatment, which Dr. Davis says could reduce costs for patients and increase their access to treatment.8

   Dr. Nester also cites a 2003 study by Woodburn, et al., saying it ties biomechanical data to clinical observations in demonstrating that orthoses have long-term biomechanical effects when patients with RA use them continuously.9 Dr. Choate notes that the Woodburn study focused on the relationship of the subtalar joint (STJ) and ankle joint in patients with RA, using rigid orthoses in a patient group that physicians usually address with soft orthoses. She notes an important finding was that the rigid orthotic initially maintained and then improved the reduction in cumulative STJ eversion motion.

   The value of Woodburn’s study is not just the end data but also “the ultimate adjustment of podiatry’s established paradigm of treatment of patients with rheumatoid arthritis,” claims Dr. Choate. Dr. Nester calls that study “a good example of biomechanical data informing practice rather than being collected simply for its own sake.”9

   Dr. Choate also mentions the studies of Burns’ Australian group, particularly the group’s study of pes cavus.10 She maintains that study is “just beginning to scratch the surface” on establishing normal and abnormal facets of gait for patients with pes cavus, a condition that can be neglected. Burns’ results have shown that pes cavus has a unique gait pattern that is independent of etiology and that may be significantly influenced by rearfoot pain, according to Dr. Choate.

   In addition, Dr. Choate cites Selby-Silverstein’s study, which found that semi-rigid custom orthotics significantly improved pain, speed of ambulation and quality of life in patients in a physical therapy group.5 As she notes, the key of this study was the emphasis on quality of life issues.

    “With the increasing number of studies focused on the pediatric and geriatric populations, it is imperative that we evaluate the quality of life issues, including emotional, social and physical functioning,” explains Dr. Choate.

image description image description

Post new comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.

More information about formatting options

Enter the characters shown in the image.