A Closer Look At Supplemental Fixation Techniques For High Risk Ankle Trauma

Author(s): 
Nicholas J. Bevilacqua, DPM, FACFAS

Ankle fractures are seemingly uncomplicated injuries. However, in the elderly and people with diabetes, this seemingly straightforward injury can have catastrophic outcomes.

   Systemic illnesses such as diabetes with end-organ damage clearly affect the overall outcome of ankle fractures and complications may occur due to a failure to recognize the unique treatments necessary for this high-risk patient population. Researchers have reported increased rates of complications with conservative and surgical management.
Following the open reduction and internal fixation (ORIF) of ankle fractures in this patient population, authors have cited high rates of complications including wound infection, nonunion, Charcot neuroarthropathy, loss of fixation, increased rates of revision surgery and amputation.1,2

   Accordingly, it is important to be fully aware of the treatment options available to optimize outcomes. With this in mind, let us take a closer look at advanced fixation techniques and constructs that are advantageous for the management of high-risk foot and ankle trauma.

   In patients with decreased bone mineral density, it is at times unrealistic to expect traditional fixation constructs to maintain compression and stability. Consequently, fixation failure and loss of correction may occur. Advances in fixation technology and techniques have aided the evolution and complexity of procedures for high-risk ankle trauma. Recent advances in fixation design (such as locking plate technology) as well as advances in techniques (such as supplemental fixation) have effectively enhanced outcomes in this high-risk population.

What About Post-ORIF Complications?

Diabetic neuropathy clearly affects the overall patient management and complications often occur after an ankle fracture. In a large population-based study using a California discharge database, SooHoo and colleagues identified 57,183 patients who underwent ORIF for an ankle fracture.1 The researchers found that patients with complicated diabetes (defined as those with end-organ damage) had the highest rates of short-term complications. The study authors examined short-term complications on the basis of readmission rates within 90 days of discharge and examined factors including wound infection and rates of revision surgery.

   Overall, the authors found a 1.4 percent wound infection rate and a 0.8 percent rate of revision surgery for the entire study patient population. In contrast, the wound infection rate in those with complicated diabetes was 7.7 percent and the revision rate was 4.4 percent.

   Wukich and colleagues reported on their outcomes of ankle fractures in patients with uncomplicated diabetes and compared the results to those with complicated diabetes.2 The authors found that patients with complicated diabetes had the highest rates of ankle complications, occurring 50 percent of the time. Nearly 25 percent of patients with complicated diabetes required revisional surgery. The authors noted that it is the complications of diabetes (neuropathy) that increase the risk of complications following ORIF of ankle fractures. Patients with complicated diabetes were 3.8 times more likely to experience a postoperative problem. Fracture care in this patient population requires an understanding of the pathophysiology of the disease process and its inherent challenges.

   The primary goal of ORIF of an ankle fracture is achieving anatomic alignment with restoration of the ankle mortise. One must employ adequate fixation constructs for fracture union. In a case series of ankle fractures in patients with diabetes and neuropathy, Schon and colleagues attributed poor outcome after ORIF to inadequate reduction, suboptimal fixation and an inadequate period of non-weightbearing.3

Add new comment