A Closer Look At Acellular Dermal Matrices For Chronic Diabetic Foot Ulcers

Author(s): 
Andrew H. Rice, DPM, FACFAS, and Mallory Przbylski, DPM

According to the Centers for Disease Control and Prevention (CDC), greater than 60 percent of non-traumatic lower extremity amputations occur in patients with diabetes.1 It is clear one can attribute this to diabetic foot ulcers (DFUs), soft tissue infection and osteomyelitis. Wounds that are arrested in the chronic phase of healing become susceptible to soft tissue and bone infection, and subsequent amputation.2 This knowledge underscores the need for production of better wound care techniques and products in order to heal DFUs in a timely manner.

   While there are a variety of wound care products available to aid in the healing of DFUs, for the purposes of this article, we will take a closer look at allografts. Allografts are bioengineered skin substitutes consisting of human, bovine or porcine, non-living, acellular tissue scaffold that allows host cellular ingrowth.3 Human-derived acellular dermal matrices (ADMs), a subdivision of allografts, are emerging as safe and unique tools for the healing of chronic DFUs unresponsive to traditional wound care modalities.

   The human-derived acellular dermal matrices include Graftjacket (KCI), Alloderm (Lifecell Corp/KCI), Memoderm (Memometal Inc./Stryker) and TenSIX (Solana Surgical). The human-derived acellular dermal matrix generated from cadaveric skin contains proteoglycans, fibronectin, hyaluronan and vascular channels that promote tissue regrowth and revascularization, leading to regeneration rather than scar formation.4,5 These products have advantages over the bovine and porcine skin substitutes as they produce minimal inflammatory response and a decreased risk of rejection.4,6

What The Literature Reveals

Brigido performed a prospective, randomized, controlled study to evaluate the efficacy of sharp debridement plus Graftjacket application versus sharp debridement only in 28 patients with diabetes over a 16-week period.2 Results demonstrate complete healing by week 16 in 12 out of 14 patients in the Graftjacket group versus four out of 14 complete wound closures in the sharp debridement only group. The author concluded that the use of Graftjacket in addition to sharp debridement can lead to a statistically significant increased percentage of complete healing of lower extremity ulcerations.2

   Winters and colleagues performed a multicenter, retrospective study including an array of lower extremity ulcerations in 100 patients treated with Graftjacket.7 The authors found the average time to matrix incorporation was 1.5 weeks, the average time to 100 percent granulation of the wound bed was 5.1 weeks and the average time to complete healing was 13.8 weeks. The matrix success rate (full epithelialization of the wound) was 90 percent.7

   Reyzelman and co-workers conducted a prospective, randomized, controlled, multicenter study comparing 47 patients treated with one Graftjacket application versus 39 patients receiving standard care (moist wound therapy using alginates, foams and hydrogels as per the physician’s discretion).8 They noted complete healing in 69.6 percent of the Graftjacket group and 46.2 percent of the standard care group. The average time to healing was five to seven weeks in the Graftjacket group and six to eight weeks in the standard care group. These results demonstrate that DFUs treated with Graftjacket were two to three times more likely to heal than DFUs treated with standard wound care therapy alone.

   The lead author has had experience with Memoderm, which is identical in its sterility assurance level (SAL) level to TenSIX.

Add new comment