Can The Fibula-Pro-Tibia Technique Have An Impact For Diabetic Ankle Fractures?

By Christopher L. Reeves, DPM,Alan A. MacGill, DPM,Amber M. Shane, DPM, and Joseph A. Conte, DPM Clinical Editor: John S. Steinberg, DPM

Appropriately selected patients with diabetes undergoing surgical treatment can have a successful outcome. To maximize positive outcomes, tight glucose control is preferable. In addition, signs of peripheral vascular disease warrant the intervention of a vascular specialist, preferably before the definitive surgery takes place. There is a benefit with these patients to follow the general rule of thumb to double the fixation, double the non-weightbearing time and double the number of post-op visits.6

Fixation options vary widely and are dependent on the severity of osteopenia, the presence of peripheral vascular disease and the integrity of the soft tissue envelope. The fixation options include percutaneous techniques such as Kirshner wires, Rush rods, percutaneous screws and external fixation as well as traditional open techniques such as lateral and anti-glide plating, and intramedullary nails.4-8,10-12

Locking plate technology has further enhanced our ability to maintain reduction with rigid fixation in patients with poor bone stock. One may use external fixation alone or to augment internal fixation. With the overall goals being rigid internal fixation and the prevention of further postoperative complications, the foot and ankle surgical community has turned its attention to the fibula-pro-tibia technique. Accordingly, let us take a closer look at this technique as an option for obtaining a rigid internal fixation construct to decrease the likelihood of late stage Charcot breakdown.

What You Should Know About The Fibula-Pro-Tibia Technique
Hahn first described the fibula-pro-tibia technique in 1884 as a means to support tibial discontinuity. The procedure involved a transfer of the proximal fibula to the proximal tibia to improve load sharing. The technique was modified throughout the years and surgeons used it to manage large tibial defects, delayed union, non-union and osteomyelitis.13-15

In 1995, Schon and Marks discussed the use of this procedure for the treatment of neuropathic ankle fracture/dislocation in the patient with diabetes.7 They modified the procedure to include multiple transsyndesmotic screws through a fibular plate in order to create a rigid ankle joint complex that promotes osseous healing and decreases the incidence of post-traumatic Charcot joint disease. Since then, other authors have published additional articles espousing the usefulness of this technique, or modifications thereof, in treating diabetic ankle fractures.4,6,11,12

We use a standard approach for ORIF of a lateral malleolar fracture. Once we have achieved reduction of the fracture via bridge plating or interfragmental compression, we fill the remaining holes in the fibular plate with 3.5-mm or 4.0-mm fully threaded screws. One may deliver the transsyndesmotic screws proximal to fractures near the ankle joint level or they may span higher fibular fractures with or without comminution present. We advocate the purchase of four cortices to reinforce the construct.

Furthermore, delivering multiple locking transsyndesmotic screws increases rigidity and decreases the chance of screw failure or the backing out of screws. Multiple transsyndesmotic screw delivery have the advantage of fixation “backup.” In other words, a break in one or two screws will not lead to a failure of the entire construct.12 Additionally, in cases that involve a medial malleolar fracture, we advocate far lateral tibial cortex screw purchase.

Add new comment