Can Autologous Bone Marrow Aspirate Be Beneficial For DFUs?

By Gerit Mulder, DPM, MS, FRCST, FAPWCA

   Falanga and colleagues applied up to three applications of autologous, culture-expanded, mesenchymal stem cells with a fibrin glue system to acute and chronic wounds.8 The acute wounds healed within eight weeks and the chronic wounds decreased or healed in 16 to 20 weeks. However, healing times are not significantly better than other treatments that have been presented in the medical literature. While similar work has been reported in the literature, the reports and studies reviewed only a small number of patients, usually retrospectively and in a non-controlled, non-randomized fashion.

What You Should Know About Harvesting And Applying BMA

However, this data does suggest a potential application of BMA to assist with wound closure. Currently, following institutional review board approval, our institution will initiate an independent, non-company funded, randomized controlled study with ulcers randomized into post-excisional debridement and into BMA or no BMA in conjunction with appropriate xenograft coverage. We hope to better establish the efficacy of combining BMA with other optimal treatments.

   The method of collection that our site has been using consists of aspirating the required amount of autologous bone marrow aspirate (approximately 1 cc per 3 cm2 of wound surface area) from the calcaneal bone of patients. One then places the BMA in the wound. Coat the syringe with a thin layer of heparin to prevent coagulation of the aspirate. Then coat the wound with a layer of the BMA.

    (There are different methods as well as different industry-based products available when it comes to quantifying and concentrating the BMA. However, it is beyond the scope of this brief review to discuss and include these devices. I encourage readers to research the availability of different devices that assist with concentrating BMA.)

   One would then cover the BMA with a collagen-based, decellularized equine pericardial dressing (Unite Biomatrix, Synovis Orthopedic and Woundcare). Staple the dressing to the wound margins to allow for prolonged cell activity and optimization of the wound healing environment. The BMA acts as a biomodulator during this time. Apply outer non-adherent dressings and dress the extremity with appropriate secondary gauze or other dressings. Follow up with standardized procedures, which entail visits at approximately one-week intervals.

   Past experience using this approach as part of our advanced care regimen suggests expedited healing. However, any results at this point are anecdotal at best as no study has been conducted to date to evaluate this regimen for diabetic foot ulcers. Institutional review board approval is required for any use of this product in a trial or outside standard use. Currently, one may use autologous products without FDA approval although the patient’s best interests and care must always be the primary considerations.

In Conclusion

This brief overview is only intended as a synopsis of another possible approach to the treatment of diabetic foot ulcers. Although autologous bone marrow aspirate has undergone study in wounds and there is interesting evidence to suggest that mesenchymal stem cells can assist in wound healing, there are insufficient, well-designed human studies with adequate numbers of patients to prove and support the validity and efficacy of this approach.

   I hope that further studies by clinicians will provide a clear understanding of the benefits, scientific value and mode of action of this newer modality of care. I encourage the clinically based reader of this discussion to further pursue this interesting and promising modality.

   Dr. Mulder is the Director of the Wound Treatment and Research Center at the University of California-San Diego (UCSD). Dr. Mulder is also a Professor of Surgery and Orthopedics in the Division of Trauma, Department of Surgery at UCSD.


Add new comment