How To Achieve Optimal Perioperative Glycemic Control In Patients With Diabetes

By Emily A. Cook, DPM, Jeremy J. Cook, DPM, and Barry I. Rosenblum, DPM

    As the role of the podiatric service becomes more integral to a multidisciplinary approach to diabetic limb salvage at an increasing number of institutions nationwide, many podiatric surgeons find themselves admitting these patients to their own service. The surgical and anesthesia teams often execute perioperative assessment and preparation, especially in non-elective procedures.     This article serves as a primer in glucose management for podiatric surgeons working in this capacity and in no way supersedes the utility of a medical consult when indicated. Evaluation and assessment of other common comorbidities such as the cardiovascular and renal function are also equally important in the preoperative examination and determination of the overall optimization of a patient.

What The Research Reveals About Metabolic Changes Due To Surgery

    Currently, there is no universal perioperative protocol for glycemic control. This is largely due to the variety of available treatment regimens and the degree of customization required to optimize the patient.1,2 Patients respond differently to insulin and other hypoglycemic medications based upon many confounding factors, such as the type of diabetes, level of insulin resistance, overall metabolism and the stresses placed upon the body among other factors.     A complex metabolic process ensues in response to surgery and anesthesia. Briefly, insulin resistance develops from increased secretion of varying amounts of the counter-regulatory hormones glucagon, epinephrine, norepinephrine, cortisol and the growth hormone produced during times of stress. There is also an overall decreased amount of insulin secretion due to increased sympathetic response and general anesthesia. This insulin resistance causes further hepatic glucose production and decreased peripheral glucose utilization.3,4,5     Furthermore, the type of anesthesia used and extent of surgical intervention undertaken creates large variations in these counter-regulatory hormones, making glucose homeostasis difficult to predict and highly variable. This catabolic fasting state of gluconeogenesis, glycogenolysis, ketosis, proteolysis and even lipolysis places the diabetic patient at risk for developing severe hyperglycemia and even potentially ketoacidosis if he or she has type 1 diabetes.6

Add new comment