Can Endovascular Atherectomy Be Beneficial In Diabetic Limb Salvage?

Author(s): 
By Peter Wilusz, DPM, and Guy Pupp, DPM

     The non-traumatic lower extremity amputation rate among people with diabetes mellitus has increased 38 percent from 1992 to 2002.1 The number of amputations has increased from 99,552 in 2000 to 110,000 in 2002.2 To appreciate this statistic, this is more than double the number of amputations on U.S. soldiers from the Civil War through Vietnam.3      Peripheral arterial disease (PAD) is largely undiagnosed. Of the estimated 12 million Americans with PAD, 2.5 million are diagnosed and only 4 percent are treated interventionally.4 One to two million people are suffering from critical limb ischemia, which carries a 25 percent one-year mortality rate and 60 percent three-year mortality rate.5 Patients with intermittent claudication show mortality rates from all causes of 30 percent and 50 percent at five and 10 years respectively.6 Due to the high mortality rates, amputation and bypass should be the last resort in the diabetic population as opposed to the first line of defense against peripheral arterial disease. Peripheral arterial disease (PAD) within the diabetic population is an enormous problem. An estimated one in three people with diabetes mellitus over the age of 50 has PAD and, overall, 12 million Americans have PAD.7 If it remains undetected, especially in the diabetic population, PAD can lead to amputation, which increases a person’s risk of heart attack and stroke, and death in approximately one-third of those amputees.8 Traditional treatment for PAD in the diabetic population may include medical management, angioplasty with or without stent, bypass grafting and amputation. Morbidity and mortality can be very high within the diabetic population, particularly with bypass grafting as a last resort. However, a new technique called endovascular atherectomy has emerged in recent years for limb salvage of the dysvascular diabetic limb.

Understanding The Nuances Of Endovascular Atherectomy

     Indeed, plaque excision via the Silverhawk endovascular atherectomy (FoxHollow) has shown promising results with the reduction of mortality and decreased rates of restenosis.      The procedure for utilizing the Silverhawk involves the following steps. Step one. After delivering the catheter to the lesion, one positions it at the selected treatment area and switches the driver to the “on” position. Switching the driver “on” automatically deflects the catheter tip, lifts the cutter and activates the motor. Step two. One proceeds to advance the cutter through the lesion, cutting tissue and collecting it in the nose cone. The operator of the device controls the length of the cut so one can treat any length of lesion. The continual ability to shave the plaque longitudinally facilitates efficient treatment of long lesions. One can fix the cutter height to enhance control and consistency of cut depth. Step three. The surgeon can turn off the driver and either reposition the cutter to treat another lesion area or remove the catheter from the artery. Torque functionality allows selective plaque excision in designated quadrants. After multiple passes, one can remove the diseased tissue from the nosecone. The surgeon can then reinsert the catheter to continue treatment if necessary.

Add new comment