Maximizing Orthotic Success With Basketball Players

By Patrick A. DeHeer, DPM
In order to make basketball shoes lighter, manufacturers have made them increasingly narrow and form-fitting, making orthotic fit difficult at best. The standard width of an orthosis is often too wide for today’s basketball shoe. One tip that I have learned over the years is to send the player’s shoes to the lab with the negative cast impressions to have the devices ground to fit the shoe. This makes things go much smoother once the player gets the orthoses. It also removes a potential negative impression in the player’s mind that can doom his or her compliance from the start (see “Secrets To Ensuring Improved Compliance With Orthotics” below). The basics of basketball orthoses come down to ensuring adequate shock absorption and shear force reduction while concurrently achieving some form of hindfoot control and midfoot support. This is certainly a difficult task and often involves a give-and-take approach to the device. Most elite basketball players do not tolerate a rigid device and prefer a softer, more accommodative orthotic. Many biomechanical experts or orthotic gurus may differ with this statement but those who have been involved with professional or collegiate basketball players for any substantial amount of time know this to be true. When I have tried to give an elite basketball player a rigid device, it has been my experience that the orthotic rarely makes it into the player’s shoe. Granted, there have been exceptions to this and the players whom I have encountered over the years who request a rigid device are players with relatively normal biomechanics and have worn custom orthoses for several years. The majority of the players prefer a semi-rigid (ideally) or an accommodative device (most commonly). Getting a player to wear a semi-rigid device that is indicated clinically when he prefers an accommodative orthotic requires a substantial effort from the medical team. This is where education and communication with the player, trainer and other medical staff are essential to the overall outcome. Through years of trial and error, I have found that combining a semi-rigid shell, such as a 1/8-inch to 1/4-inch polypropylene device, with multiple layers of shock absorbing materials, such as ethyl vinyl acetate (EVA) and nylene (nylon covered neoprene), has the best tolerance and acceptance by most players. Graphite can be a substitute for polypropylene. While it offers the advantages of being lighter and thinner, graphite is stiffer and less forgiving than polypropylene. It is essential to make the device full length for basketball. Dr. Kirby emphasizes the importance of a full-length device and top cover materials. “Full-length foot orthoses with vinyl or leather or other shear-resistant topcovers are a requirement to increase top cover durability and to (prohibit) the orthoses (from sliding) within the shoe,” notes Dr. Kirby.2 How Modifications Can Bolster Orthotic Success When using a more flexible type of shell, clinicians may employ several useful modifications in basketball orthotic design in order to provide more midfoot support and hindfoot control. A deep heel seat is very helpful in providing more hindfoot control. One of the first things players typically check when they are handed a device is the softness of the heel. I will use an EVA heel post (or similar material) to add further shock absorption for the tremendous forces that occur at heel contact during playing. However, making too much of a heel lift is contraindicated in the basketball device. As Dr. Kirby states, “Excessive heel contact point thickness (i.e., excessive heel lift) in basketball orthoses is contraindicated since this will raise the height of the subtalar joint axis from the floor and increase the mechanical leverage for ground reaction force to cause inversion ankle injuries in the athlete.”2 An arch fill with an accommodative material also provides more support to the midfoot while absorbing shock and reducing friction. The concern with this addition is the increased thickness to the device, which may make shoe fit all the more difficult. A more recent addition that I have been routinely using is a reverse Morton’s extension made of Korex or Poron. This will not only aid in jumping by helping to engage the peroneal longus tendon but also provides further shock absorption to the forefoot. Metatarsal pads are useful in taking pressure off the metatarsal area and providing more midfoot support. Dr.

Add new comment