How To Diagnose Lateral Ankle Injuries

Start Page: 65

Continuing Education Course #135 — October 2005

I am pleased to introduce the latest article, “How To Diagnose Lateral Ankle Injuries,” in our CE series. This series, brought to you by the North American Center for Continuing Medical Education (NACCME), consists of regular CE activities that qualify for one continuing education contact hour (.1 CEU). Readers will not be required to pay a processing fee for this course.

Diagnosing a lateral ankle injury can be challenging. The initial presentation may be deceptive and some injuries may require more advanced imaging to confirm an accurate diagnosis. Addressing these and other key points, Remy Ardizzone, DPM, and Ronald L. Valmassy, DPM, provide a comprehensive guide to these common injuries that range from chronic lateral ankle instability to peroneal tendon injuries.

At the end of this article, you’ll find a 10-question exam. Please mark your responses on the enclosed postcard and return it to NACCME. This course will be posted on Podiatry Today’s Web site ( roughly one month after the publication date. I hope this CE series contributes to your clinical skills.


Jeff A. Hall
Executive Editor
Podiatry Today

INSTRUCTIONS: Physicians may receive one continuing education contact hour (.1 CEU) by reading the article on pg. 66 and successfully answering the questions on pg. 74. Use the enclosed card provided to submit your answers or log on to and respond via fax to (610) 560-0502.
ACCREDITATION: NACCME is approved by the Council on Podiatric Medical Education as a sponsor of continuing education in podiatric medicine.
DESIGNATION: This activity is approved for 1 continuing education contact hour or .1 CEU.
DISCLOSURE POLICY: All faculty participating in Continuing Education programs sponsored by NACCME are expected to disclose to the audience any real or apparent conflicts of interest related to the content of their presentation.
DISCLOSURE STATEMENTS: Drs. Ardizzone and Valmassy have disclosed that they have no significant financial relationship with any organization that could be perceived as a real or apparent conflict of interest in the context of the subject of their presentation.
GRADING: Answers to the CE exam will be graded by NACCME. Within 60 days, you will be advised that you have passed or failed the exam. A score of 70 percent or above will comprise a passing grade. A certificate will be awarded to participants who successfully complete the exam.
RELEASE DATE: October 2005.
EXPIRATION DATE: October 31, 2006.
LEARNING OBJECTIVES: At the conclusion of this activity, participants should be able to:
• differentiate among grade 1, grade 2 and grade 3 injuries to the lateral collateral ligaments;
• discuss common physical examination findings with chronic lateral ankle instability;
• assess findings from talar tilt and anterior drawer tests;
• discuss contributing factors to peroneal tendon injuries; and
• assess the potential benefits of orthotics as an adjunctive treatment for lateral ankle sprains.

Sponsored by the North American Center for Continuing Medical Education.

Here one can see an acute ankle injury. Once one has ruled out a fracture, acute or chronic lateral ankle injuries represent a diagnostic challenge.
This manual talar tilt/inversion stress radiograph shows excessive talar inversion within the ankle mortise. Note the intraarticular loose body in the lateral gutter.
This manual anterior drawer stress radiograph demonstrates incompetence of the anterior talofibular ligament.
Here one can see a peroneal tenogram showing extensive stenosing tenosynovitis and adhesions.
On this T1-weighted MRI image, one can see a partial tear to the anterior talofibular ligament and a shallow fibular groove.
Here is an extensive talar osteochondral defect on a T1-weighted MRI sequence.
Here one can see a compensated rigid forefoot valgus with an inverted calcaneus.
By Remy Ardizzone, DPM, and Ronald L. Valmassy, DPM
Bencardino JT, Rosenberg ZS, Serrano LF: MR Imaging features of diseases of the peroneal tendons. MRI Clinics of North America 9(3):493-505, 2001.
31. Major NM, Helms CA, Fritz RC, et. al.: The MR imaging appearance of longitudinal split tears of the peroneus brevis tendon. Foot and Ankle 21:514-519, 2000.
32. Wang XT, Rosenberg ZS, Meclin MB, Schweitzer ME: Normal variants and diseases of the peroneal tendons and superior peroneal retinaculum: MR imaging features. Radiographics 25(3):587-602, May-June 2005.
33. Zgonis T, Jolly GP, Polyzios V, Stamatis E: Peroneal tendon pathology. Clin Podiatr Med Surg 22:79-85, 2004.
34. Scanlan RL, Gehl RS: Peroneal tendon injuries. Clin Podiatr Med Surg 19:419-431, 2002.
35. Niemi W, Savidakis J, DeJesus JM: Peroneal subluxation: a comprehensive view of the literature with case presentations. J Foot and Ankle Surg 36(2):141-145, 1997.
36. Mendicino RW, Orsini RC, Whitman SE, Catanzariti AR: Fibular groove deepening for recurrent peroneal subluxation. J Foot and Ankle Surg 40(4):252-263, 2001.
37. Berkowitz MJ, Kim DH: Fibular position in relation to lateral ankle instability. Foot and Ankle International 25(5):318-321.
38. Barrett JP, Downey MS, Hillstrom HJ: Retrospective analysis of neurapraxia and axonotmesis injuries of select peripheral nerves of the foot and ankle and their conservative and surgical treatment. J Foot and Ankle Surg 38(3):185-193, May/June 1999.
39. McCrory P, Bell S, Bradshaw C: Nerve entrapments of the lower leg, ankle and foot in sport. Sports Med 32(6):375-391, 2002.
40. Refaeian M, King JC, Dumitru D: Isolated sural neuropathy presenting as lateral ankle pain. Am J Phys Med Rehabil 80:543-546, 2001.
41. Hyslop GH: Injuries to the deep and superficial peroneal nerves complicating ankle sprain. Am J Surg L-1:436-439, 1941.
42. Stone JW: Osteochondral lesions of the talar dome. J A Acad Orth Surg 4:63-73, 1996.
43. Takao M, Ochi M, Uchio Y, Naito K, Kono T, Oae K: Osteochondral lesions of the talar dome associated with trauma. Arthroscopy 19(10):1061-1067, Dec. 2003.
44. Birk GT, DeLee JC: Osteochondral injuries: clinical findings. Clin Sports Med 20(2):279-286, April 2001.
45. Berndt A, Harty M: Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg 41A:988-1020, 1959.
46. Canale ST, Belding RH: Osteochondral lesions of the talus. J Bone Joint Surg 62A:97-102, 1980.
47. Alexander AH, Lichtman DM: Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans): long-term follow-up. J Bone Joint Surg 62A:646-652, 1980.
48. Brostrum L, Sundelin P: Histological changes in recent and “chronic” ligament ruptures. Acta Chir Scand 132:248-253, 1966.
49. Meislin RJ, Rose DJ, Parisien JS, et. al.: Arthroscopic treatment of synovial impingement of the ankle. Am J Sports Med 21:186-189, 1993.
50. Rubin DA, Tishkoff NW, Britton CA, et. al.: Anterolateral sort-tissue impingement in the ankle: diagnosis using MR imaging. Am J Roentgenol 169:829-835, 1997.
51. Valmassy R: Pathomechanics of lower extremity function. Clinical Biomechanics of the Lower Extremity. Mosby Yearbook; 59-84, 1995.
52. O’Toole GC, Makwana NK, Lunn J, Hardy J, Stephens MM: The effect of leg length discrepancy on foot loading patterns and contact times. Foot Ankle Int 24(3):256-259, 2003.
53. Esenyel M, Walsh K, Walden JG, Gitter A: Kinetics of high-heeled gait. J Am Podiatric Med Assoc 93(1):27-32, 2001.
Additional Reference
54. Glencross D, Thornton E. Position sense following joint injury. J Sports Med Phys Fitness 21:23-27, 1981.
CE Exam #135
Choose the single best response to each question listed below.
1. Injuries to the lateral collateral ligaments generally heal within:
a) One week
b) One to two weeks
c) Three to four weeks
d) Four to six weeks
e) Eight to 12 weeks
2. Which of the following does not contribute to persistent lateral ankle pain?
a) Osteochondral defect of the talus
b) Neuropraxia of the deep peroneal nerve
c) Tendon sheath tear of the peroneus brevis
d) Tendon sheath tear of the peroneus longus
e) Compensated rigid forefoot valgus
3. Stress testing in the ankle requires a force equivalent to:
a) 5 kPa
b) 10 kPa
c) 15 kPa
d) 20 kPa
e) 25 kPa
image description image description

Post new comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.

More information about formatting options

Enter the characters shown in the image.