A Guide To Preventing And Managing Golf Injuries

By Kirk Herring, DPM, and Kelli Pearson, DC

Over 25 million Americans play golf on a regular basis.1 Unlike many athletes, golfers also remain active well into their later years.2 With the aging of the adult population, increasing numbers of seniors will turn or return to golf for exercise and pleasure. Given the increasing numbers of people playing golf, you may start to see more patients presenting with golf-related injuries. Golf-related injuries are commonly attributed to the repetitive nature of the golf swing and a long day of walking and standing.3,4 One may also see an increased incidence of overuse injuries among senior golfers. These injuries may be partly due to the mechanical circumstances of an aging “more-upright” swing, antalgic gait patterns and the influences of joint replacements. The prevalence of injuries among amateur golfers reported among all epidemiologic studies ranges from a high of 62 percent to a low of 23.3 percent.3,5-7 Surprisingly, when rates of injury per golfer per year are considered, the rate of injury for each of these studies is nearly identical and ranges from 1.19 per golfer per year to 1.31 per golfer per year.5-7 In a study of 198 amateur golfers, researchers estimated that over 32 percent of injuries were localized to the low back and lower extremity.8 In a similar study of 393 professional golfers, over 37 percent of injuries were localized to the low back and lower extremity.4 Golf injuries can be categorized as single traumatic events or overuse injuries. Numerous circumstances and events, ranging from technical errors and physical deficiencies to a lack of practice warm-up and environmental conditions, have been linked to golfing injuries.8,11,17,19 While common rehabilitation efforts include rest, physical therapy, ice, medicine, injections, heat, bracing and surgery, it’s important to understand the biomechanical issues (specifically, the swing mechanics) involved in golfing in order to provide appropriate treatment. Understanding Swing Mechanics Effective swing mechanics including proper set-up, backswing, downswing and follow-through are dependent upon a stable base of support, flexibility, strength, balance and proprioception. Aside from compensating for shoes or environmental circumstances and dampening shearing forces at the foot-ground interface, the lower extremity facilitates weight shift, sagittal and frontal plane positioning, and transverse plane rotation. The lower extremity also sets the stage for hip “low-gear” and shoulder “high-gear” rotation and stability while minimizing unnecessary oscillations. Williams, Cavanagh and Carlsoo have shown that ground reaction forces (GRF), including the direction and magnitude of shear forces, exhibit distinct differences between right and left feet.9,10 Koslow examined weight shift patterns among 30 beginning golfers using an 8-iron and driver, and reported that most did not execute proper weight shift.11 Swing patterns appear to be very individualized and do not always adhere to prescribed patterns, especially among mid- and high-handicap golfers.11,12 Researchers have shown that optimizing patterns of rotation and weight transfer will facilitate the segmental and kinematic linking necessary to perform an efficient, accurate and reproducible golf swing, resulting in a lower risk of injury.9,13 All body segments contribute to the effective movement of the body’s center of mass during a typical golf swing, none moreso than the lower extremity. Every great swing has a starting point or setup, which places the golfer in an optimal position to execute a reproducible golf swing and ball impact. This position has been described in great detail but simply represents a comfortable ready or athletic position. Ideally, the subtalar joint is nearly neutral or in a slightly pronated position. When this occurs, the golfer is set in a relatively relaxed and stable position that requires little energy to maintain. Also keep in mind that the feet initiate backswing. Subtle shear forces build within both feet, resulting in a net movement away from the intended target.9 A kinetic linkage triggers a “low-gear (hip)/ high-gear (shoulder)” rotation. This creates a smooth takeaway and serves to store kinetic energy for later release at impact.

Add new comment