Can Antibiotic Beads Have An Impact In Osteomyelitis Cases?

By Anthony C. Yung, DPM, and John S. Steinberg, DPM
We have found sterile serous drainage from the wound in a number of our wounds postoperatively. This represents the breakdown product of the calcium sulfate beads. Be advised that placing too many calcium sulfate beads may result in significant exudate production, which may delay primary wound closure. Kelly, et. al., in a large study of the use of calcium sulfate as a bone graft substitute, reported that 4 percent of cases may have postoperative drainage with complete resolution after four to six weeks.8 One should be careful to differentiate this drainage from continued infection or fibrous tissue. It’s important to achieve a balance between the need for a large number of beads for the desired antibiotic effect versus having too many and the resulting complication of serous drainage. We normally use five of the 4 mm pellets in a single ray resection and 15 to 20 in a mid-foot amputation without a delay in wound healing from serous drainage. What The Literature Reveals As with most treatment options regarding osteomyelitis, there are few reports regarding the efficacy of calcium sulfate antibiotic beads in a clinical setting. Similar to PMMA, its use is considered off-label and without FDA approval. Using calcium sulfate beads as an antibiotic delivery system packed within bony defects has been reported in the literature with good success. No studies to date have reported on using the modality in the soft tissues as adjunctive therapy to amputation surgery or for soft tissue infections. Its proximity to bony stumps may be of concern for increased incidence of bony regrowth. However, we have not experienced any bony regrowth when we have used these beads adjacent to amputation sites including digit, ray and midfoot amputations. Other reports have emerged fairly recently in the literature. Reporting on an animal model study, Nelson, et. al., noted an 84.6 percent cure with calcium sulfate antibiotic beads alone compared with 41.7 percent with debridement alone and 35 percent with systemic antibiotics.13 McKee, et. al., reported on 25 patients with culture-confirmed long bone osteomyelitis. All patients were treated with local debridement, systemic oral antibiotics and absorbable calcium sulfate beads impregnated with tobramycin. In 92 percent of cases, the researchers found no clinical and radiographic signs of infection at a mean 28-month follow-up. In eight cases, they noted sterile draining sinus postoperatively.14 Turner, et. al., reported on a single patient they treated for intramedullary osteomyelitis with calcium sulfate tobramycin beads. They achieved resolution of infection with filling of dead space cavity at 31 months.12 Final Notes Calcium sulfate is biodegradable, an important consideration in that it eliminates the need for removal and associated costs. We have found this surgical adjunct to be of value when performing a delayed closure of a problem wound site. Complete resorption of the beads occurs at six months or sooner and you can follow this clinically with serial radiographs. It also has the advantage of a more reliable elution profile of antibiotic than traditional PMMA as more antibiotic is delivered in the postoperative period. The antibiotic is completely released over a two- to three-month period with high concentrations detectable for at least four weeks. Calcium sulfate beads seem to be a viable bioabsorbable alternative to PMMA antibiotic beads in the adjunctive treatment of musculoskeletal infections, and warrant further study. Dr. Yung is a Chief Resident and Dr. Steinberg (shown at right) is an Assistant Professor within the Department of Orthopaedics, Podiatry Division at the University of Texas Health Science Center in San Antonio, Texas. Editor’s Note: For a related article, see “Can The Osteoset Lead To Better, Cost-Effective Healing?,” on page 70 of the December 2002 issue or check out the archives at



Exactly the information I was looking for. Thank you.

Add new comment