A Closer Look At Arthroscopy For Ankle Fractures And Post-Fracture Defects

Start Page: 26
Graham A. Hamilton, DPM, and Travis L. Sautter, DPM

Keys To Initial Assessment And Patient Management

   One should obtain standard radiographic views of the ankle for the initial assessment of the fracture pattern. Computed tomography (CT) of fractures is sometimes warranted when extensive comminution or intra-articular involvement is present. This aids in preoperative planning of fracture surgery. If there is high fibular tenderness, obtain a tibia-fibula series in order to include the ankle and knee joints. Obtain foot X-rays when the clinical exam warrants.

   With the patient hemodynamically stable, perform closed reduction of the fractures and relocation of any joint subluxation or dislocation. Apply a layered compressive dressing and splint, and instruct the patient to elevate the injured limb. One may use two surgical windows to fix the injured extremity. The early period is within six hours after the injury whereas the late period is between six to 12 days.

   It is unwise to make incisions in between the six-hour and six-day window as this increases the likelihood of postoperative wound problems.5 The surgeon has to respect this principle of allowing the tissue envelope to “settle” if one is to perform arthroscopic assisted reduction as soft tissue extravasation of ingress fluid from the arthroscopy procedure can further increase the likelihood of wound problems.

Assessing The Benefits And Contraindications Of Arthroscopic Reduction

   There are many advantages to arthroscopic assisted reduction. These advantages include: minimal surgical intervention; direct visualization of fracture reduction; comprehensive intra-articular evaluation; and acute treatment of chondral and osteochondral injuries.

   The contraindications to performing arthroscopic assisted reduction include: a grossly compromised soft tissue envelope; excessive soft tissue edema with or without blisters; and open fractures.

Pertinent Pearls For Performing Arthroscopic Surgery For Ankle Fractures

   Surgeons can use large (4 mm) or small joint (2.7 mm) arthroscopes. Utilize standard anteromedial and anterolateral portals. One can establish a posterolateral portal for posterior talar lesions or posterior malleolar fractures.

   The authors recommend avoiding arthroscopic pumps as a rule. Gravity inflow is preferred. Separate inflow and outflow portals help with distention visualization. Pumps require a three-in-one cannula system, one for inflow, one for outflow and another to determine intra-articular pressure. If the cannula inadvertently slips into the subcutaneous space and no outflow is measured, the pump can dramatically increase inflow pressure.

   Excessive fluid extravasation can potentially cause compartment ischemia and it has been documented. Gravity inflow avoids this potential complication. We recommend using two 3- to 4-L bags of lactated Ringer’s solution at about three feet above the table with large diameter, high flow Y-tubing.

   With most fracture patterns, one can adequately evaluate the ankle joint without distraction. The unstable ankle mortise allows for easier passage of instruments than in elective ankle arthroscopy. However, with posterior ankle pathology or difficult fracture reductions as one may see with subacute fractures, ankle distraction is warranted.

   Takao described a Kerlix roll technique for distraction.5 We have modified this somewhat by using industry fabricated noninvasive straps and a 4-inch gauze roll. This technique facilitates efficient intraoperative set-up and ensures surgeon flexibility in the use of ankle distraction during the arthroscopic portion of the procedure.

image description image description

Post new comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.

More information about formatting options

Enter the characters shown in the image.