A 10-Step Guide To Applying Split Thickness Skin Grafts

Jennifer Pappalardo, DPM, Diana Perry, BS, and David G. Armstrong, DPM, PhD, MD

Could split thickness skin grafts (STSGs) be beneficial in improving wound healing in patients with diabetes? These authors explore the viability of STSGs in this population and offer a step-by-step guide for using this modality. They also discuss the emergence of indocyanine green angiography to help enhance grafting results.

In 2011, there were an estimated 366 million people worldwide diagnosed with diabetes, a number that is expected to increase with time.1 The Centers for Disease Control and Prevention (CDC) projected that as many as 552 million individuals could be living with diabetes by 2030.1

   Approximately 26 million Americans have been diagnosed with diabetes mellitus.1 The most severe and common complications of diabetes are foot ulcerations, half of which develop a serious infection.2,3 Through an evidence-based prevention program, patient education, foot ulcer treatment by a multidisciplinary team, assessment of the structural and vascular abnormalities in the patient and routine surveillance, the rate of ulceration and subsequent amputation can decrease by 49 to 85 percent.4

   Numerous factors contribute to delayed lower extremity wound healing. These factors include inadequate vascular supply, lack of proper offloading, poor glycemic control and inadequate wound care. One should treat these wounds aggressively to help facilitate timely healing and prevent the numerous complications associated with chronic wounds.

   Wound care clinics have adopted many modalities to assist in wound closure. These modalities include negative pressure wound therapy (NPWT), bioengineered tissue, aggressive offloading and split thickness skin grafting (STSG). Often, these modalities get credit for achieving the best results. The goal of treatment is to reduce the size and complexity of the foot ulcer, and prevent infection and amputation.

   At the Southern Arizona Limb Salvage Alliance, we prefer what we call a “horizontal and vertical approach” to ulcer healing. Generally, we reduce wound depth and exposed structures via NPWT, which encourages margins to adhere. We reduce wound surface area through either secondary intention and biologics or skin grafting.5 For split thickness skin grafts, we offer a 10-step path to success.

Emphasizing The Benefits Of Thorough Debridement And NPWT To Facilitate Granulation Tissue

Step 1. The patient goes to the operating room for aggressive surgical debridement. The patient also undergoes an appropriate revascularization procedure, if necessary, as deemed by the vascular surgical team. Surgeons excise all nonviable soft tissue and bone, and assess the vascular status to the extremity before proceeding with NPWT.

   Step 2. Following the debridement of all nonviable tissue, the patient begins treatment with a NPWT device. Negative pressure wound therapy has gained momentum over the past 20 years as a safe, effective modality for treatment of diabetic foot ulcerations.6 For NPWT, we use reticulated, open cell foam covered by a semi-permeable adhesive drape. This connects to a negative pressure therapy unit with evacuation tubing.6 Patients utilize the device until virtually all bone, tendon and deep tissue are covered with granulation tissue. This process typically takes four weeks.

How To Harvest And Prepare The Graft

Step 3. When the patient achieves appropriate soft tissue coverage, the team schedules the patient for harvesting and application of the split thickness skin graft. Excision and evacuation of nonviable tissue, bacteria and contaminants from wounds, burns and soft tissue injuries prepare the wound site for STSG application. Removal of any dysvascular or necrotic tissue will return the wound to an active metabolic state.7

Add new comment